8 research outputs found

    Impact of land-use land-cover change on stream water quality in the Reedy Fork- Buffalo Creek watershed, North Carolina: a spatio temporal analysis

    Get PDF
    The quality of rivers and streams are affected by the land-use-land-cover (LULC) compositions that are present within their watersheds and riparian buffers. Hence, understanding how these LULC compositions, present within watersheds, influences water quality of these water bodies is very important for river management and restoration. This dissertation research was undertaken with the goal of examining the effects changing LULC on stream system. The research was conducted in the Reedy Fork Buffalo Creek watershed in Guilford County, North Carolina to provide a study area of streams within a nested watershed assemblage with a variety of sub-watersheds and varying LULC proportions for comparison. Toward this end, LULC spatial fragmentation of the Reedy Fork Buffalo Creek watershed was quantified for the 2002 through 2013 study period based on remote sensing data. This watershed is located at the headwaters of the Cape Fear River basin, the largest river basin in North Carolina. Analysis of how river flow and several water quality variables were related to landscape attributes at three scales: 100 m, 150 m, and watershed was then performed. The Soil and Water Assessment Tool (SWAT) was used to examine the contribution of LULC to water yield and nitrate loadings in the year 2030 relative to future LULC change scenarios. Results show that the water quality of the Reedy Fork Buffalo Creek changed significantly during the recent decades. These changes in space and time indicate a trend of accelerating deterioration in water quality. Also, LULC pattern had major impacts on the flow and water quality of the Reedy Fork Creek at multiple spatial scales. In particular, impervious LULC, although small in percent cover, exerted a disproportionately large influence both locally and over distance. Results also show that most water quality variables (Conductivity, hardness, nitrate, TKN, and Turbidity) were correlated with landscape pattern on all three spatial scales although the correlation was stronger at the watershed scale than at the buffer scales. Additionally, results from the scenario analysis shows that, compared to the current situation (2010), a 13.5% increase in surface runoff, 9.26% increase in water yield, and 31.85% in increase in nitrate yield was recorded for 2030. These increases were due to the conversion of forest and grass into impervious surfaces. The research highlighted the probable role of the interactions between LULC spatial distribution and water quality. This scale multiplicity suggests that, while water-monitoring and river restoration need to adopt a multi-scale perspective, particular attention should be paid to the watershed scale. In the context of population growth and increasing urban development continuing into the 21st century, preservation and restoration of vegetative LULC and the elimination of impervious surfaces within the watershed should be a primary concern for the general public, the scientific community, and public policy decision makers

    Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT

    No full text
    To use water resources sustainably, it is important to understand the quantity of water resource spatially and temporally. Therefore, the work presented here attempts to preface future modeling applications within a watershed in North Carolina, by assessing the performance of the Soil and Water Assessment Tool (SWAT) model in analyzing watershed hydrology and variability of streamflow in the watershed. Statistical model performance measures, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were used to evaluate the correlation between the observed and simulated monthly streamflow. The result shows a good agreement between the observed and simulated flow. Both NSE and R2 were found to be greater than 0.7 for the calibration and validation period. A scenario analysis performed to determine the effect of future land use change on runoff and water yield shows a 13.9% and 8.32% increase in the surface runoff and water yield respectively, in 2030, when impervious percentage increases from 24.2% in 2010 to 36.5% in 2030. This interesting performance obtained with the SWAT model suggests that SWAT model could be a promising decision support tool to predict water balance and water yield in other watersheds in North Carolina for sustainable water management of water resources where the impact of recent state mandates regarding water quality and quantity is a critical issue. Keywords: SWAT model, ICLUS, Water yield and runoff, Reedy Fork-Buffalo Creek, Land-use change scenario

    Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network.

    No full text
    To provide accurate biological hypotheses and elucidate global properties of cellular networks, systematic identification of protein-protein interactions must meet high quality standards.We present an expanded C. elegans protein-protein interaction network, or 'interactome' map, derived from testing a matrix of approximately 10,000 x approximately 10,000 proteins using a highly specific, high-throughput yeast two-hybrid system. Through a new empirical quality control framework, we show that the resulting data set (Worm Interactome 2007, or WI-2007) was similar in quality to low-throughput data curated from the literature. We filtered previous interaction data sets and integrated them with WI-2007 to generate a high-confidence consolidated map (Worm Interactome version 8, or WI8). This work allowed us to estimate the size of the worm interactome at approximately 116,000 interactions. Comparison with other types of functional genomic data shows the complementarity of distinct experimental approaches in predicting different functional relationships between genes or proteinsJournal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.info:eu-repo/semantics/publishe
    corecore